Solutions.

Problem 1.

$$
\begin{aligned}
& \frac{\partial v}{\partial s}=\frac{\partial v}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial s}=\left(2 x \sin y+y^{2} e^{x y}\right)(1)+\left(x^{2} \cos y+x y e^{x y}+e^{x y}\right)(t) \\
& \frac{\partial v}{\partial t}=\frac{\partial v}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial t}=\left(2 x \sin y+y^{2} e^{x y}\right)(2)+\left(x^{2} \cos y+x y e^{x y}+e^{x y}\right)(s)
\end{aligned}
$$

Note that when $s=0$ and $t=1$, we have that $x=2$ and $y=0$. Therefore,

$$
\begin{aligned}
& \left.\frac{\partial v}{\partial s}\right|_{\substack{s=0 \\
t=1}}=(0+0)(1)+(4+0+1)(1)=5 \\
& \left.\frac{\partial v}{\partial t}\right|_{\substack{s=0 \\
t=1}}=(0+0)(2)+(4+0+1)(0)=0
\end{aligned}
$$

Problem 2.

$$
\begin{aligned}
\frac{d P}{d t} & =\frac{\partial P}{\partial L} \frac{d L}{d t}+\frac{\partial P}{\partial K} \frac{d K}{d t} \\
& =\left[1.47(0.65) L^{-0.35} K^{0.35}\right] \frac{d L}{d t}+\left[1.47(0.35) L^{0.65} K^{-0.65}\right] \frac{d K}{d t} \\
& =\left[1.47(0.65)(30)^{-0.35}(8)^{0.35}\right](-2)+\left[1.47(0.35)(30)^{0.65}(8)^{-0.65}\right](0.5) \quad \text { (note the units!) } \\
& =-0.5958
\end{aligned}
$$

Problem 3.

a. $\nabla f(x, y)=\left\langle 2 x y, x^{2}+\frac{1}{2} y^{-\frac{1}{2}}\right\rangle$
b. The direction in question is $\vec{v}=\langle 3,2\rangle$. The unit vector in the same direction as \vec{v} is $\vec{u}=\frac{\vec{v}}{\sqrt{\vec{v}}}=\frac{1}{\sqrt{13}}\langle 3,2\rangle$. So, the directional derivative of f at $(2,1)$ in the direction \vec{v} is

$$
D_{\vec{u}} f(2,1)=\nabla f(2,1) \cdot \vec{u}=\left\langle 4, \frac{9}{2}\right\rangle \cdot \frac{1}{\sqrt{13}}\langle 3,2\rangle=\frac{21}{\sqrt{13}}
$$

Therefore, at $(2,1)$ in the direction towards $(5,3)$, the slope of f is $\frac{21}{\sqrt{13}}$.
c. The maximum rate of change of f at $(2,1)$ is $|\nabla f(2,1)|=\frac{\sqrt{145}}{2}$.
d. The direction in which the maximum rate of change of f at $(2,1)$ occurs is $\nabla f(2,1)=\left\langle 4, \frac{9}{2}\right\rangle$.

Problem 4.

Let $F(x, y, z)=x y+y z+x z=5$. Then, the surface in question is given by the equation $F(x, y, z)=5$, and the normal vector to the surface at $(1,2,1)$ is $\nabla F(1,2,1)$:

$$
\nabla F(x, y, z)=\langle y+z, x+z, x+y\rangle \quad \Rightarrow \quad \nabla F(1,2,1)=\langle 3,2,3\rangle
$$

Therefore, an equation of the tangent plane to the surface at $(1,2,1)$ is

$$
3(x-1)+2(y-2)+3(z-1)=0
$$

and parametric equations of the normal line to the surface at $(1,2,1)$ are

$$
x=1+3 t \quad y=2+2 t \quad z=1+3 t
$$

Problem 5.

First, find all the first partial derivatives:

$$
f_{x}(x, y)=4 y-4 x^{3} \quad f_{y}(x, y)=4 x-4 y^{3}
$$

Next, find the critical points by solving the following system of equations:

$$
\begin{array}{lll}
4 y-4 x^{3}=0 & \Rightarrow & y=x^{3} \\
4 x-4 y^{3}=0 & \Rightarrow & x=y^{3} \tag{2}
\end{array}
$$

Substituting (1) into (2), we get $x=x^{9}$, which implies that $x=-1,0,1$. Plugging this back into (1), we get the following critical points $(-1,-1),(0,0)$, and $(1,1)$.
Now, find the second partial derivatives:

$$
f_{x x}(x, y)=-12 x^{2} \quad f_{y y}(x, y)=-12 y^{2} \quad f_{x y}(x, y)=4
$$

Now we can perform the second derivative test:

$$
D(x, y)=\left(-12 x^{2}\right)\left(-12 y^{2}\right)-4^{2}=144 x^{2} y^{2}-16
$$

- $(-1,-1): D(-1,-1)=128>0, f_{x x}(-1,-1)=-12<0$. Therefore, $(-1,-1)$ is a local maximum.
- (0,0$): D(0,0)=-16<0$. Therefore, $(0,0)$ is a saddle point.
- (1,1): $D(1,1)=128>0, f_{x x}(1,1)=-12<0$. Therefore, $(1,1)$ is a local maximum.

Problem 6.

The optimization model for this problem is

$$
\begin{array}{ll}
\operatorname{maximize} & x y z \\
\text { subject to } & x+2 y+2 z=108 \quad(x, y, z>0)
\end{array}
$$

In the notation we used in class for the Lagrange multiplier method, $f(x, y, z)=x y z, g(x, y, z)=x+2 y+2 z$ and $k=108$. The gradients are

$$
\nabla f(x, y, z)=\langle y z, x z, x y\rangle \quad \nabla g(x, y, z)=\langle 1,2,2\rangle
$$

So, the Lagrange multiplier equations are

$$
\begin{align*}
y z & =\lambda \tag{1}\\
x z & =2 \lambda \tag{2}\\
x y & =2 \lambda \tag{3}\\
x+2 y+2 z & =108 \tag{4}
\end{align*}
$$

(1) and (2) imply $x z=2 y z$, which implies $x=2 y$, since z must be strictly positive. (2) and (3) imply $x z=x y$, which implies $z=y$, since x also must be strictly positive. Substituting into (4), we obtain $2 y+2 y+2 y=108$, or $y=18$. Tracing our steps backwards, we obtain $x=36$ and $z=18$. Therefore, we have one candidate for a maximum/minimum to our optimization model, $(36,18,18)$, whose value is $f(36,18,18)=11664$.
We can determine if $f(36,18,18)=11664$ is a minimum or maximum by testing another point that satsifies the constraint $x+2 y+2 z=108$, such as $(104,1,1)$. Note that $f(104,1,1)=104$, so it must be the case that $f(36,18,18)=11664$ is a maximum.

